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Abstract—This paper is part of a series of papers by the author providing the exact transient temperature
distribution in bodies heated by disk heat sources. The body in this paper is a semi-infinite cylinder with a
uniform disk source centered at the end and uniformly heated. Results are given by infinite series, tables,
figures and approximate relations. Care has been taken to provide methods for efficient evaluation of the
infinite series because direct evaluation can require thousands of terms. Alternative exact methods are

provided that require as few as three terms.

The solution is intrinsically important but it is also a basic building block for spatially and time varying
heat fluxes for finite as well as semi-infinite cylinders. This is discussed briefly herein and references for more
extensive treatment are provided. The solution is also a basic one for the new numerical procedure called the

surface element method.

NOMENCLATURE
a, radius of heated area;
b, radius of cylinder;
Cps specific heat;
D, function defined by equation (23);
E(-), complete elliptic integral of the second
kind;
I(r,z,b), function defined by equation (19);
Gr,b), function defined by equation (24);

k, thermal conductivity;
K(-),

complete elliptic integral of the first kind ;

Ji(+), Bessel function of the first kind ;

q, heat flux;

r, radial coordinate;

R, a number greater than 2.4; see equation
(35);

t, time;

T, temperature;

T, initial temperature;

z, axial coordinate.

Greek symbols

o, thermal diffusivity;
Br 2k + 1)n/2;
I'(n), gamma function;

I'(n,x), incomplete gamma function;
g, b1,
o, density.

INTRODUCTION

THE TRANSIENT temperature distribution in a semi-
infinite cylinder heated over a disk-shaped region
centered at the end is a basic problem in heat
conduction. The region at z=0for 0 < r < a is
considered to have a constant heat flux and the other

surfaces are insulated as shown in Fig. 1.

Analogous probiems occur in electric heating, flow
in porous media and mass transfer.

The solution can be used as a building block in
various problems associated with the contact con-
ductance and temperature corrections for thermo-
couples embedded in solids and at the surface of
solids. For example, a new numerical technique called
the ‘surface element’ method can utilize the solution as
a building block [1].

Kennedy, in 1960, presented some analytical sol-
utions and graphical results for the steady state case in
finite cylinders [2]. He was interested in thermal and
electrical spreading resistance within a package of a
semiconductor device. The expression that he gave was
evaluated at r=0 and z=0; for certain other loca-
tions his series expression can be very slow to
converge with thousands of terms required.

In 1975 Yovanovich [3] presented the steady state
portion of the solution for the semi-infinite cylinder.
There is no steady state solution to the problem but the
general transient solution does have a part that is time-
independent and can be related to the contact con-
ductance [3, 4]. The solution provided by Yovanovich
for the constant surface heat flux is similar to the one
given by Kennedy [2] and the one given herein and can
take thousands of terms in its evaluation. However,
methods for a more efficient solution are provided
herein.

The solution derived herein is of interest for laser
heating and drilling [5]. In [5] a transient solution in
the form of an integral is given for plates so thin that
only radial heat flow is considered.

A similar problem to the one described in this paper
was solved by Keltner and Wildin [6] in connection
with analysis of foil heat flux gages. An infinite series
solution was developed for a finite cylinder insulated at
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FiG. 1. Semi-infinite cylinder heated over a disk-shaped
region centered at r = 0 and z = 0. Insulated over all other
surfaces.

z = L and isothermal at the outer radius b.

Steen [7] utilized finite elements to solve the trans-
ient problem including convective and radiant surface
heat losses. The motivation was the use of laser heating
for surface hardening and surface alloying by vapor
deposition.

In the thorough paper of Jury et al. [8] the
motivation was the investigation of steady state end
effects of heat, mass or electricity through a cylindrical
rod. Some series solutions with numerical evaluations
along with finite different calculations were presented.
The steady solution for a finite cylinder that is
isothermal at z = L was treated. Their series solution
required only tens of terms for evaluation.

The other extreme from steady solutions is the early
time behavior. For small dimensionless times the local
region in the vicinity of the disk source changes in
temperature but the temperatures are negligibly
changed beyond the local region. Hence for such early
times the solution for a semi-infinite body can be used.
The exact solution in terms of an integral is given in
Carslaw and Jaeger [9]. Some series solutions that are
easier to evaluate have been developed by Beck [10,
11]. Another important integral form of the solution is
given in [12].

An important reason that the semi-infinite cylinder
is provided herein rather than a finite cylinder is that
the former serves as a building block for finite
geometries. It is a more basic building block. By
superimposing solutions for sources (or sinks)at z = 0,
+2L, +4L, ... one can obtain results for finite
cylinders that are insulated or isothermal at z =L

[10].

MATHEMATICAL DESCRIPTION
The geometry and coordinates are shown in Fig. 1.
A mathematical statement of the problem is the
solution of
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where T; is the initial temperature. For the other
symbols, see the nomenclature.

SOLUTION

The solution is developed from the Green’s function
solution for an instantaneous point source in an
infinite insulated cylinder that is given on p. 378 of [9]
which can be written as

e—*fdar
2nb? J(rot’)
{ 1+ Y cosn(6—6)Y ki

i=t

ur,0,z,t') =

AT (Air) T (A7)

2
( pra %)J,f(/lib)

where (r', 6, 0) is the location of the point source, t’ is
the time measured from the time of the energy release
by the source, and « is the thermal diffusivity. This
equation represents the temperature rise for the in-
stantaneous point source. The eigenvalues /4; are found
from

(3a)

J(b)=0, n=012,... (3b)

where the prime on J denotes differentiation with
respect to its argument.

For a constant disk source at z = 0, the temperature
at time ¢ is equal to T; plus (3a) multiplied by 2¢r’ dr’
d#’ dt’/pc, and integrated from ¢ =0 tot,r'=01toa
and @' = 0 to 2n. (The factor 2 is needed because a
semi-infinite rather than infinite cylinder is being
considered.)

An integral including the 6’ dependence is

27 2n forn=0
fo cosn(§ — 6)dg ={0 forn=1,2... @

Consequently only the n = 0 term is needed in (3a)and
eigenvalues are now found from

JiAb)=0, i=12,.. 5)
Using the relation
J P Jolir')dr’ = ;Jl().,-a) 6)
0 i

one can obtain
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wherei=1,2,....

(10)

Cfz,t) = e"“{l + erf[).((au:)”2

(11)

Then (7) can be written as
2ga {aB(z ,t)

Tr,2,t) =T, + p X
o Cilz,t)J (A7) 1 (4a)
2 kbl ohb)T } 12

which is one form of the result that is being sought.

In order to show the result given by (12) more
conveniently it is put into a dimensionless form.
Furthermoreitis written in a manner to display a time-
independent component. Let

i=1

T (rt,z%t") = Trz) =T -, =l +=Z
qa/k ’ a’ a
(13)
at b
tt=—, b¥=-, M=
= = A= Ab (14)

Using these definitions but dropping the plus super-
scripts gives

2B(z t)

T(r,2,t) =

Az, 1) J o(Air/b)J 1 (24/D)
1 [2Jo(2)]?

where the eigenvalues are found from

+ I(r,z,b) (15)

s

i

Ji(4) =0 (16)
and now B, A4, and I are given by
B(z,t) = t1? jerfc(0.5z¢~*12) 17)
2 t1/2 z
Afz,t) = e Crfc( ib - W)

Agtti2
+ e*4P erfc (‘T— + 5%) (18)
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There are several advantages of writing (15) in the
form that is given rather than as the dimensionless
form of (12). First it displays clearly the presence of a
time-independent term I(r, z, b). For some cases I(r, z, b)
gives rise to a steady term. Note that for large times
(t/b* > 1 and t/z* » 1) the explicit sum in (15) goes to
zero; for such times

1 t\'"?
T(r,t,z) = b—2[2 (;) - z] + I(r,z,b). (20)

This solution can be used to derive a constriction
resistance [3]. Second, for a given position (r, z) and b
ratio, the function I(r, z, b) need be evaluated only
once. This is important because the direct evaluation
of I(r, z, b) can involve thousands of terms particularly
as b becomes 10 or larger. Third, by focusing attention
on this troublesome term some more effective methods
of evaluation can be found. It is my conviction that an
exact solution is not satisfactory unless it can be
evaluated accurately with a moderate number of terms
(less than 100, say). Computability is important.
Several methods suggested for efficiently evaluating
I{r, z, b) are given below.

DISCUSSION OF SOLUTION

Before displaying specific results, several obser-
vations are made. For the limiting case of b =1, i.e.
uniform heating over the end of the cylinder, the
summations given in (15) and (19), are both zero
through the use of (16). In this case the temperature
distribution is the well-known one-dimensional result
[9] of

T(z,t) = 2t 2 ierfc(0.52t1/2) (21)

which does not exhibit a steady state solution. For the
other extreme value of b— oo the geometry is a semi-
infinite body [10, 11] for which a steady state exists.
Provided b is larger than one, the semi-infinite body
solution can be used if the value of t/b? is sufficiently
small.

The explicit summation in (15) converges much
more rapidly for ¢ > 0 than I(r, z, b) at z =0 (and
possibly for all z’s). For the small times, ¢ <0.02z%, the
explicit summation is negligibly small. Both sum-
mations tend to converge rapidly for z>0, partic-
ularly if z>0.3b. Fewer terms are needed in (15) as ¢
becomes large. In fact, for z < b only one term is
needed in the summation of (15)if t> b2 For small t's
many terms may be needed but then the semi-infinite
body solutions [10, 11] can be used.

A location of particular interest is at the surface, z
=0, where the dimensionless temperature can be
written as
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erfc(Zst' 2/b)J o{Air/b)J 1 (7:/b)
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Table 1 can be used to obtain numerical comparisons.
The denominator in the summation of (22) and in
I(r,z,b) is denoted D;

D, = [LJo(A)]?

which is the second row of Table 1. It monotonically
increases with i. The term

Gir,b) = Jo(Air/b)J 1(Z:/b)/D; (24)

isgivenforr =0,1andbforb = 2,5and 10. Forz = 0,
G(r, b) is the ith term in the summation of I(r,0, b). For
z > 0, the magnitude of each term in I(r, z, b) is less
than the corresponding one in Table 1 for the same r
and b values due to the presence of the exp(— z4;/b)
termin (19). The same is true in the explicit summation
of (22) because erfc(x) is always less than unity for
x> 0.

As indicated in Table 1 the ]G,-(r, b)| terms are
always less than unity. As a consequence it is possible
for z to be sufficiently large in (19) so that I(r, z, b) is
negligible in value; this occurs when

z2>92b/3.8 = 2.4b

T(rOt)—%( > + I(r,0,b)
23,

(22)

(23)

e #MP <1078 or

where 1078 is taken to be close enough to zero. This
implies that for z > 2.4b the temperatures are the same
as for a uniformly heated end with the same total heat
flow as in the disk source. (Only three terms are needed
if z is as small as 0.75b.)

If z = 0, the number of terms required to evaluate
I(r,0, b)can run into the thousands. This is particularly
true for large b values as suggested by the G,(0, 10)
terms in Table 1. Fortunately there are much more
efficient methods to evaluate I(r, O, b) than using the
expression given by (19). Some of these methods are
given in connection with (27) to (35).

The explicit summation part of (22) is much easier to
evaluate than I(r, 0, b) due to the presence of the erfc( - )
term. For sufficiently large values of t!/2/b, the sum-
mation is negligibly small and no terms are needed.

Table 1. Numerical values of some terms in I{r, z, b). D; and
G(r,b) are defined by equations (23) and (24)

i=1 i=2 i=3
A 383171 701559 10.17347
D, 238164 443308 6.45345
G,(0,2) 0.24383 003025  —0.05207
G(0,5) 0.14936 0.12238 0.08898
G,0,10) 0.07897 0.07436 0.06905
G(1,2) 006647  ~0.01153 0.00775
G(L,5) 0.12822 0.06916 0.01815
G(1,10) 0.07610 0.06549 0.05231
G(2,2) —0.09820 0.00908 0.01300
G,(5,5) —0.06016 003673  —0.02222
G,(10,10) —0.03181 002232  —001724
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This is because erfc(x) decreases very rapidly with x for
x > 2;for example, erfc(x) is less than 10~ 7 for x being
greater than 3.8. The first 2; value is about 3.83.
Consequently no terms are needed (to within an error
of 1077) for t'2/b > 1 or

t>b? (25a)

which is a convenient expression. If only three terms
are used, then necessarily

t> b4, (25b)

For only somewhat smaller ts than this, the semi-
infinite solution is valid [11].

At this point the difficulty in utilizing the solution
given by (22) is in evaluating I(r, 0, b). After presenting
some results I(r, 0, b) will be considered further.

GRAPHICAL AND TABULAR RESULTS

The temperature distribution at the surface is
illustrated in Fig. 2 where the dimensionless tempera-
ture is plotted versus dimensionless radial position for
the dimensionless times of 0.01, 0.1, 1, 10 and 100.
Some of the same information is contained in Table 2
and 3. Notice that the t = 0.01 curve is very flat over
the heated area until r = 0.9 and then drops to about
zero beyond r = 1.1. For such early times the tempera-
ture distribution over the heated area is almost
identical to that obtained in a semi-infinite body
heated uniformly over its surface. The temperature
distribution from (21) reduces to

T(0,1) = 2(t/m)' 2. (26)

Also for such a small dimensionless time nearly the
same surface temperature distribution would be found
for any b value greater than about 1.1. Somewhat
similar behavior is noted for t = 0.1 but the uniform
temperature region is now smaller. In addition, the
temperature rise extends out to r x 1.8; consequently
untilt = 0.1 the temperatures for r > 0 are identical for
all bs greater than 1.8. In other words, the tempera-
turesfort > 0.1 and 0 < r < b < 1.8 are identical to
those obtained in a semi-infinite body heated by a disk
source [11]. For a more precise comparison the early
time values given in Tables 2 and 3 can be compared
with those tabulated in [11]. The b = 10 values
provided in Table 3 deviate only in the sixth place for ¢
= 0.1 from the semi-infinite values [11].

The effect of the boundary at r = b is felt at ‘large’
times. In Fig. 2 two ¢t = 10 and t = 100 curves are
shown with the solid curve representing b = 10 and the
dashed curve b = 5. The temperatures are increased
due to the presence of the insulated boundary atr = b.

Another way to look at the surface temperature is to
examine plots of specific locations as a function of r.
See Fig. 3 whichis alog—log plotof T vstforr = 0,1,2
and 10 for b = 10. The straight line on the upper left
represents the surface temperature of a uniformly
heated semi-infinite body (b = 1). At the center (r = 0)
and for ¢t < 0.1 the T curve is nearly the same as if the
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F1. 2. Dimensionless local temperature distribution at z = 0for various dimensionless times as a function of

dimensionless radius.

Table 2. Local transient temperatures for b = 2 for various radii

Temperatures for various radii values

Time, t r=00 r=05 r=10 r=15 r=20
0.01 0.112838 0.112836 0.054825 0.000001 0.0
0.1 0.352882 0.336874 0.162280 0.009498 0.000766
0.5 0.631692 0.578342 0.314891 0.083427 0.047691
1.0 0.738065 0.679560 0.403971 0.160964 0.120769
5.0 1.090040 1.030823 0.753556 0.508948 0.468133
10.0 1.351319 1.292102 1.014835 0.770226 0.729412
50.0 2.453968 2.394751 2117484 1.872876 1.832062
100.0 3.280205 3.220088 2943720 2699112 2.658298

Table 3. Local transient temperatures for b = 10 for various radii

Temperatures for various radii values

Time, ¢ r=0 r=20.5 r=10 r=15 r=20
0.1 0.352882 0.33687 0.16228 0.0094%0 0.000371

1.0 0.729097 0.668299 0.38471 0.124565 0.051148
10.0 0911166 0.845566 0.54851 0.268722 0.172673
50.0 0.969185 0.903452 0.60600 0.325571 0.228648
100.0 1.002254 0.936521 0.63907 0.358639 0.261715
500.0 1.141730 1.075997 0.77855 0498114 0.401190
800.0 1.208570 1.142837 0.84539 (.564954 0.468031
1000.0 1.246241 1.180508 0.88306 0.602626 0.505702

1635

body were uniformly heated. Atr = 1 and for t < 0.01
the temperature rise is almost exactly one-half that
given at r = 0. The above comments apply for any b
> 2. For the large times (¢ > 10*) the temperatures
again vary linearly in the log-log plot and dem-
onstrate that no steady state condition exists for
finite b.

Figure 4 is similar to Fig. 3 but the curves are for the
center location of r =0, z = 0. Several b values are
shown. The b = 1 curve is for a completely heated
surface; the geometry can be either a semi-infinite

body or a semi-infinite cylinder. The b = 2, 5 and 10
curves are for a semi-infinite cylinder and b—
corresponds to a semi-infinite body heated only over a
disk-shaped region. A steady state condition exists
only for the latter case. For the finite b’s a quasi-state
condition exists.

Because the temperatures rise indefinitely with time
for finite b values but with a quasi-steady state being
attained, it is instructive to plot

2 /1\1?
T{r,0,t) — ‘5‘5(;)



versus r for various times. Results for b = 2, 5 and 10
are depicted in Fig. 5. The approach to a quasi-steady
condition is shown to occur in the least time for the
smallest b value. The quasi-steady state valuesin Fig. 5
are simply I(r, 0, b) which illustrates the importance of

VALUES OF I{r,0,b)

The function I(r, 0, b) is shown in two different ways.
Table 4 gives values as a function of r/b and b™! = &.
Figure 6 shows I(r, 0, b) versus ¢ for fixed r values. In
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F1G. 4. Dimensionless local temperature vs dimensionless
time for various r values for b = 10 and z = 0.

this figure the I(r, 0, b) curves are seen to be almost
linear with ¢ for small values of &

The « = 0 (or equivalently b— o0) case corresponds
to the physical geometry of a semi-infinite body [11].
For this case of b—

FiG. 5. Dimensionless local temperature minus (2a~ 2)(t/x)* 2 ys dimensionless radius for various times and b
=2, 5 and 10.
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not depend on r. The approximation provided by (29)

is excellent provided r < b/4.
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which is accurate to six decimal places. At the extreme
r value, namely b, and for large b's one can use

I(b,0,b) ~ —0.38479b" ' + 0.02225b"2  (31)

which is accurate to four significant figures for b > 5.

EVALUATION OF I(r,0,b) USING SERIES
There are several ways to reduce the computation

JAMES V. BECK

(24), the effect of the disk source has been smoothed
out by the z/b ratio of about 2.4. The present solution
can be superimposed (utilizing sources and sinks) to
obtain the result for a finite cylinder for steady state
and transient conditions. If the length L of the cylinder
is taken to be 2.4b (or greater), the only source (or sink)
having a significant contribution is the source at z = 0.

Utilizing the solution given by Jury et al. [8] it can
be shown that for r > 1

‘y (_l)ksm[ﬂ "<1 ‘%ﬂ" <%>[K (ﬁk)“ @;>+ I‘(ﬂ >K°<g’:>} (35)

R
1(r,0,b) = F(é% - 1> +

Mk=0

load in evaluating I(r, O, b) from series expressions.
Two of these utilize known transient solutions and a
third employs another equivalent series.

The first of these methods evaluates I(r, 0, b) by
equating (15) to the known solutions of

T(r,0,t) = 2(t/n)!, 0<r<l1 (32a)
T(1,0,8) = (t/m)'? (32b)
Tr0,0)~0, r>1 (32¢)

provided ¢ is sufficiently small such as 0.0001. The
resulting equation is solved for I(r, 0, ). Rather than
thousands of terms only hundreds are needed.

The same idea can be employed with the semi-
infinite body solution [11] with times large compared
to 0.0001 but still small enough so that the tempera-
tures at the point of interest are changing as though the
body were semi-infinite. Using this approach with T(r,
0, 1) in (22) replaced by the semi-infinite solution
denoted T,; (r, 0, t) yields

ma erfc(2;t' 2/b)J o (Air/b)J 1 (2;/b)

I(r,0,b)x 2
rom~2 £ S
2 [\
+ Ts.i.(ra 0’ t) - b_z(;) . (33)
Any time ¢ satisfying
t < 0.01b? (34)

can be chosen to solve (33); this criterion applies to
any r. If ris small, say r < 1, then even larger times are
possible such as

t<b*A

where A = 0.025forb=2, A=004forb=5and 4
= 0.1 for b = 10. The largest permissible time in (33)
reduces the required number of terms, i, in (33) to
only 3 or 4. Clearly this means a tremendous reduction
in computation though T,;(r, 0, t) must still be
evaluated. Fortunately the latter can also be calculated
with a small number of terms [11].

The final method to be mentioned utilizes another
series expression that is given in [8]. In this paper the
steady state solution is given for a finite cylinder
maintained at z = L. As pointed out below equation

2k + 1)1, (Be/R)

where # = 2.4 or larger and B, = (2k + 1)n/2. The
larger # is made, the more terms are needed. For all r
values somewhat greater than one, (35) can be ef-
ficiently evaluated. For example, for b = 10,r = 5 and
z =0 only 16 terms are needed.

Though the series expression is relatively straight-
forward to evaluate, mistakes can be made. When
Jury et al. [8] utilized this series for r=>b and z=0
for an electrical heater problem, they made some
computational errors. In their Table I they gave a
voltage from double precision calculations as
19.6552396 ... while their finite difference calculation
for the same point was 19.62678. Carefully using their
expression gives the value of 19.616009 which shows
that their finite difference value was more accurate
than their ‘exact’ result. This coincides with my
previous experience that ‘exact’ series expressions are
not easy to evaluate even when the required number of
terms is not large. That is why it is helpful to have some
correct values available as (I believe) are given in
Table 4.

In conclusion, the simplest way to evaluate I(r, 0, b)
is to use Table 4 if the needed values are contained
therein. Interpolation is possible throughout most of
the table. For large b values (29) is very convenient and
(30) is good for all b’s for r=0. For r=Db and large b,
(31) can be employed. For any r and b, the series given
by (33) is very efficient although it requires the semi-
infinite body solution [11]. Since the semi-infinite
body solution for the times required usually needs
fewer than ten terms, the method based on (33) is
recommended.

SUMMARY

An exact series solution is developed for a semi-
infinite cylinder insulated on the sides and with a disk
source centered at the end. Graphs and tables are
provided to provide insight into the solution. The term
in the exact solution, I{r, z, b), can take thousands of
terms to evaluate in a direct fashion. Much more
efficient methods are provided.

The solution is a basic one in heat conduction. It can
be utilized to obtain many related solutions for steady
state as well as transient cases, finite as well as semi-
infinite cylinders [ 107, and for various space and time
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variations of the surface heat flux 3, 10, 11]. The given
solution can be considered to be a building block for
many other cases. It can be utilized for various
complex connected bodies using the surface element
method which is currently under development.
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TEMPERATURES VARIABLES DANS UN CYLINDRE SEMI-INFINI, CHAUFFE PAR UNE
SOURCE DE CHALEUR EN DISQUE

Résumé— L article est une partie d’'un ensemble de textes, par I'auteur, donnant la distribution exacte de
température variable dans des corps chauffés par des sources de chaleur en disque. Ici, il s’agit d’'un cylindre
semi-infini avec un disque-source centré a extrémité et uniformément chauffé. Les résultats sont donnés sous
forme de séries infinies, de tables, de figures et de relations approchées. Une attention est portée aux méthodes
pour I'évaluation de Tefficacité des séries infinies car une évaluation directe peut nécessiter un millier de
termes. Des méthodes exactes alternées sont fournies qui demandent 4 peine trois termes.

La solution est intrinséquement importante mais elle constitue aussi une base pour les flux thermiques
variables aussi bien pour les cylindres finis que semi-infinis. Ceci est discuté briévement et des références pour
un traitement sont fournies. La solution est aussi une base pour la procédure numérique nouvelle appelée la

méthode des éléments de surface.

INSTATIONARE TEMPERATURVERTEILUNG IN EINEM HALBUNENDLICHEN ZYLINDER

>

DER VON EINER KREISFORMIGEN WARMEQUELLE BEHEIZT WIRD

Zusammenfassung—Der Aufsatz gehort zu einer Serie von Arbeiten des Autors zur exakten instationdren
Temperaturverteilung in K6rpern, die von kreisférmigen Warmequellen beheizt werden. Im vorliegenden
Fall ist der K 6rper ein halbunendlicher Zylinder mit einer gleichformigen Quelle in Form einer Kreisfiziche
und gleichmiBiger Beheizung. Die Ergebnisse werden als unendliche Reihen, Tabellen, Diagramme und
Niherungslosungen angegeben. Es wurde Wert auf effiziente Auswertungsmethoden fiir die unendlichen
Reihen gelegt, weil die direkte Auswertung die Beriicksichtigung Tausender von Gliedern erfordern kann.
Geinderte Methoden werden angegeben, die z. B. nur drei Glieder erfordern. Die Losung an sich ist bereits
wichtig, sie stellt aber dariiberhinaus auch eine Grundldsung fiir den zeitlich und értlich verinderlichen
WirmefluB sowoh! in endlichen als auch halbunendlichen Zylindern dar. Hierauf wird kurz eingegangen,
und Hinweise fiir eine ausfihrlichere Behandlung werden gegeben. Die Losung ist auch Grundlage eines
numerischen Verfahrens mit der Bezeichnung “Oberflichenelement—Methode™.
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HECTAUMOHAPHOE TIOJIE TEMNIEPATYP B INOJYBECKOHEYHOM UWJIMHIAPE.
HATPEBAEMOM TEMJAOBbIM MCTOYHUKOM B ®OPME AHNCKA

Ansoraumn — IpeanaraemMas cTaThs ABISETCA YACTHIO CephM paboT aBTOpa M0 MCCneNOBaHHIO HecTa-
LHOHAPHOTO Daclpelie/icHHs TeMNepaTyp B TejaX, HarpepaeMblX TEMJIOBLIMH HCTOYHHKAMH B (opme
aucka. B 1anHOM cTaThe paccMaTpHBaeTCA N0J1yOeCKOHEUHbIA LWIHHAP, HA TOPIE KOTOPOTo MO HEHTPY
PACOI0KEH PABHOMEPHO Pacnpefe/ieHHbIN HCTOYHHK Tenna B GopMe aHcka. Pe3ynbTaTh NpeacTaBleHb]
B Buae GECKOHEYHBIX PAnoB, TabnuL, pMCYHKOB M npubnuxeHHbIX cooTHoweHuR. Ocoboe BHUManue
yAeneHo 0DOCHOBaHMIO METOAOB pacyeTa OECKOHEYHBIX pPHAOB, TAK Kak [UIA NPAMOrO pacdeTa Tpe-
6yeTcs OrpoOMHOE HMCIIO 4WieHOB psaa. [lpeicTaBieHbl TakkKe APYrHe TOYHBIE METONbL, Tpebyrolue
BLIYHC/IEHKA He Dosiee TPeX 4CHOB.

TTony4eHHoe peuleHHe HE TONLKO NpEACTAaBAseT HHTepec caMo ro cebe, HO W CAYKHT OCHOBOH
pacueTa HECTAUHOHAPHOTO HATPEBa KOHEWHBIX H NONyOeCKoHEYHBIX HHAMHAPOB. 3TOT BOAPOC KPaTko
obCyxaaeTcs B CTATHE ¥ IPHBOAATCH CCHUIKH HR MCTOMHMKH, B KOTODBIX Aaetcs Dosiee nonHbIA aHanH3,
Ha ochoBe pewenns pa3paboTan Takke HOBbIH YHCIEHHBIH METOM, HalbIBAEMbIH METOLOM 7JNiEMEH-

TapHbIX NOBEPXHOCTEH.



